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The problem of Dirac fermions in graphite subject to a perpendicular magnetic field is studied. We show
analytically that the weak-interlayer interaction between the graphene sheets leads to anomalies in the
Shubnikov-de Haas and de Haas-van Alphen magneto-oscillations governed by the orbits around extremal
cross sections of the graphite Fermi surface. The calculation of the Landau plot performed within a four-band
continuum model reveals that magneto-oscillations are aperiodic, except of the case of vanishing interlayer
interaction at the H point of the graphite Brillouin zone. Also for all other orbits along the H-K-H edge the
magneto-oscillations are only asymptotically periodic in the quasiclassical limit with the phase corresponding
to massive fermions.
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Graphite is a layered material composed of weakly
coupled two-dimensional �2D� graphene sheets formed by
hexagonally arranged carbon atoms. In 2004, a single sheet
of graphene was prepared from three-dimensional �3D�
graphite by micromechanical cleavage.1 The discovery im-
mediately attracted attention of the solid-state physical com-
munity, as the electrons in graphene obey a linear energy
dependence on the wave vector k, and behave like massless
relativistic particles—Dirac fermions �DFs�. In a magnetic
field B, the Landau-level �LL� energies of DFs are propor-
tional to �B instead of the linear dependence on B typical for
massive Schrödinger fermions �SFs�. In the seminal
papers,1–3 the Shubnikov-de Haas �SdH� magneto-
oscillations �MOs� in graphene were found periodic in 1 /B,
similarly as in the case of a 2D gas of massive SFs, but with
the phase shifted by �. The shift, which was clearly demon-
strated by the Landau plot of magnetoresistance oscillations,
is due to the existence of the zero-energy LL, shared by
electrons and holes. For the same reason, the anomalous
quantum-Hall effect with a half integer instead of integer
quantization was observed in mechanically exfoliated
samples.2 This is considered as the most direct evidence of
DFs in graphene. In 2006, important technological progress
was achieved. The epitaxial graphene was grown on the
single-crystal silicon carbide by vacuum graphitization.4,5

The discovery of DFs in graphene has resulted in renewed
interest in bulk graphite. The possible coexistence of both
carrier types was expected in this material. The low-energy
linear dispersion near the H point of the graphite Brillouin
zone was found by the angle-resolved photoemission
spectroscopy.6 The magnetotransmission7 and scanning tun-
neling spectroscopy experiments8 showed LL spectra charac-
teristic of both DFs and SFs. In a series of papers,9–11 the
spectral analysis of SdH and de Haas-van Alphen �dHvA�
oscillations was employed to determine the phases of two
series of MOs observed in graphite. Based on their analysis,
the authors of Refs. 9–11 came to a conclusion that one of
two groups of oscillating carriers corresponds to DFs. Re-
cently, a paper12 was devoted to a careful, mostly experimen-
tal investigation of SdH effect in graphite, where doubts
about the observation of DFs using magnetotransport mea-
surements were expressed.

Here the problem is treated from the theoretical point of
view. We construct a Landau plot for the model Hamiltonian
developed by Slonczewski, Weiss, and McClure �SWM�
�Refs. 13–15� and compare the result with Landau plots for
SFs and DFs, which are described below.

The energy spectra of 2D SFs and DFs in a zero magnetic
field can be written as

ES�k� =
�2k2

2m�
, ED�k� = � �vFk , �1�

where k=�kx
2+ky

2, m� is the effective mass of SFs, and vF is
the Fermi velocity of DFs. The positive and negative
branches of the conical DFs spectrum correspond to the elec-
trons and holes, respectively.

In a magnetic field, the spectra of SFs and DFs are quan-
tized into the LLs as follows:

En
S = ��c�n +

1

2
�, En

D = � �2��e�vF
2Bn , �2�

where �c= �e�B /m� is the cyclotron frequency and the index
n=0,1 ,2 , . . .. In the case of SFs the equidistant LLs lie
above E=0 for any finite B, whereas in the DFs case the
lowest-electron LL is shared with the highest-hole LL lo-
cated exactly at E=0.

The Eq. �2� is consistent with the Onsager-Lifshitz quasi-
classical quantization rule

AQ�EF� =
2��e�B

�
�n + �Q�, Q = S,D , �3�

where AQ�EF�=�kF
2 is the area of the SF or DF Fermi circle,

calculated with the Fermi energy EF and the Fermi wave
vector kF taken from Eq. �1�. We get �S=1 /2 for SFs and
�D=0 for DFs.

MOs observed in SdH and dHvA effects are controlled by
oscillations of the density of states �DOS�. It is well known
that the DOS on the Fermi level, g�EF�, can be expressed as
an imaginary part of the resolvent G�z�= �z−H�−1,
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g�EF� = −
1

�
Im Tr G�EF + i0� . �4�

For simple diagonal Hamiltonians of SFs and DFs given by
Eq. �2�, we get

gQ�EF� =
�e�B
2��

�
n=0

�

��EF − En
Q� . �5�

It follows from Eq. �5� that the DOS reaches maxima at
magnetic fields Bn for which the LLs cross the Fermi energy
EF. A Landau plot, i.e., the plot of the inverse magnetic fields
1 /Bn versus the level index n is a standard tool used to
determine the frequency and phase of MOs. For SFs and DFs
we arrive to

B0
Q

Bn
= n + �Q, �6�

where B0
S=m�EF / ���e�� and B0

D=EF
2 / �2��e�vF

2� are the oscil-
lation frequencies, in agreement with the quasiclassical ex-
pression obtained from Eq. �3�,

B0
Q = �AQ/2��e� . �7�

It is clear that the positions of maxima of SF and DF oscil-
lations differ by a half of the period, i.e., by � in terms of a
phase factor.

In graphite, the interlayer interaction of Bernal-stacked
graphenes adds a kz dependence to the electron energy spec-
trum and a 3D Fermi surface �FS� is formed close to the
H-K-H edge of the hexagonal Brillouin zone �BZ�. As men-
tioned above, the graphite 3D electronic structure is de-
scribed by the semiempirical SWM Hamiltonian, which em-
ploys seven nearest-neighbor tight-binding �TB� parameters
�0 ,�1 , . . .�5 ,	, and the value of the Fermi energy, EF. Pre-
viously, the model parameters were fitted to various optical
and transport experiments.16 Recently, their values are con-
tinuously refined by fitting to the experimental data12 and/or
to the results of first-principles numerical simulations of the
graphite band structure.17

Among the seven SWM parameters, the parameter �3,
which controls the trigonal warping of the FS, brings a nu-
merical complications in the case of nonzero magnetic field.
When �3 is taken into account, the magnetic-field-SWM
Hamiltonian has an infinite order and must be diagonalized
numerically.18 Fortunately, its influence is not too strong for
kz far from the K point of the BZ and energies close to EF.18

To facilitate our analytical treatment, we prefer to use a sim-
plified Hamiltonian H with �3 neglected, in the form intro-
duced in the McClure’s paper.15

The choice of �3=0 yields isotropic equienergetic con-
tours. The FS of graphite consists of elongated electron and
hole pockets located near the points K and H with
kz-dependent circular cross sections. In the quasiclassical
limit, two extremal cross sections define two series of MOs
and two quasiclassical frequencies B0

e and B0
h for electrons

and holes, respectively. Analytical solutions for the FS cross
sections can be found, e.g., in Ref. 16.

With these approximations an expression similar to Eq.
�6� can be obtained for any kz-dependent cross section of the

3D graphite FS. To do so, we need to find the poles of the
resolvent G�z�= �EF−H+ i0�−1. In other words, we should
solve the secular equation derived from the simplified
Hamiltonian H of Ref. 15 for Bn, i.e., to find the roots Bn of
the secular polynomial.

The solution yields a formula for the inverse magnetic
fields as a function of the level index, n, in a shape

B�
G�kz�
Bn

=

n +
1

2
��1

4
+ n�n + 1���kz�

1 � ���kz�
, �8�

where the three coefficients B�
G�kz� and ��kz� can be derived

from the SWM model and the value of EF. The kz depen-
dence originates from cos�kzc /2� which appears in the inter-
layer TB SWM parameters, c /2 denotes the interlayer dis-
tance in graphite. Obviously, B�

G�kz� /Bn, as given by Eq. �8�,
are not periodic in 1 /B.

An expression for the Landau plot corresponding to Eq.
�8� can be written in a form

B�
G�kz�
Bn

= n + ��,n
G �kz� . �9�

In this equation ��,n
G �kz�, defined by the right-hand side of

Eq. �8�, is not a constant describing the oscillation phase, but
a variable which depends on the LL index n.

The dependence on n is most pronounced for high mag-
netic fields, i.e., for small n. In the low-magnetic-field limit,
with a large number of LLs below EF, we can write n�n
+1���kz�
1 /4 and �n�n+1�→n+1 /2. Then ��,n

G �kz�
→1 /2, and we can conclude that the charge carriers in
graphite behave, at least as far as the phase is concerned, as
the SFs.

Only when we can completely neglect the interlayer in-
teraction, as at the H point of the 3D BZ, kz=� /c,
cos�kzc /2�=0, 	=0, and ��kz�→0, we get

B�
G��/c�

Bn
= n +

1

2
�

1

2
, �10�

a result which corresponds to DFs.
In this paper, the Landau plots of two series of MOs,

which can be observed in graphite, are considered as most
interesting. We constructed them based on the parameters of
the SWM model taken from Ref. 16. The explicit expres-
sions for B�

G and ��kz�, which appear in Eq. �8�, will not be
presented here. Instead, their kz dependences are shown in
Fig. 1 together with the contours of the FS. The positive sign
applies in the formula �8� for kz from the electron region of
FS and the parameter B+

G is equal to the quasiclassical fre-
quency B0

e. Similarly, the negative sign should be taken for kz
from the hole pockets, where B−

G becomes equal to B0
h. For

both electron and hole extremal orbits the parameter � is
large and, consequently, the right-hand side of Eq. �8� can be
approximated by �n�n+1�. The marked difference is only for
n=0. The Fig. 2 shows to what extent the accuracy of this
approximation is reasonable.

The expression for B�
G /Bn is not periodic and the question

arises how many LLs must be resolved to reach the linear
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dependence on n, i.e., the quasiclassical limit n+1 /2. The
result of the linear approximation of a model curve �n�n+1�
is presented in the inset of Fig. 2, where the relative devia-
tions from the quasiclassical frequency and phase are shown.
It turns out that both frequency and phase are underestimated
if we took into account only limited number of n, 1�n
�N. Less oscillations are necessary to get close to the qua-

siclassical frequency than to obtain a reasonable approxima-
tion for the phase. This may explain the differences found
between the experimentally determined phases of samples
with different mobilities, which are determined from differ-
ent number of oscillations resolved.

Note that the above Landau plot can be derived if we
approximate the energy spectra of electrons and holes by the
formulas

En
e = ��c

e�n�n + 1�, En
h = ��c

h�n�n + 1� , �11�

where �c
e and �c

h are the quasiclassical cyclotron frequencies
corresponding to extremal electron and hole orbits.

Two series of MOs discussed above correspond to �
1
and to the maximum cross sections of the electron and hole
pockets. There are another two extremal cross sections, till
now not reliably resolved in the transport experiments, lo-
cated around the H point of the BZ, where ��1. In spite of
the fact that, according to Ref. 18, the parameter �3 has a
qualitative influence on the LLs structure near this point, it is
at least of the theoretical interest to study the behavior of the
��,n

G �kz� for model with �3 neglected.
For a given kz the dependence of the energy bands on k is

hyperbolic in a zero magnetic field. While near the maximum
cross sections there are broad minima/maxima of bands
which are similar to parabolas for small k near the H point
the hyperbolas are very sharp and with a shape close to the
Dirac cone. Therefore, a smooth transition from SFs to DFs
is expected. Figure 3 reveals that the behavior of ��,n

G �kz� is
more complicated.

In the SWM model the k dependence of the zero-field
energy at the H point �kz=0� is given by

EG =
	

2
���	

2
�2

+ �2vF
2k2, �12�

which is not equal to the Dirac cone for a finite 	. Never-
theless, �=0 implies that �−,n

G �kz� is a constant equal to 0, as
for the DFs. This is in agreement with the Landau plot con-
structed from the energy spectra in a magnetic field, which
according to Ref. 15 have a simple analytic form
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FIG. 1. �Color online� �a� Contours of the graphite Fermi sur-
face, �b� a dimensionless parameter � as a function of kz, and �c� the
parameters B�

G as functions of kz.
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FIG. 2. �Color online� ��,n
G �kz� for maximum cross sections of

the electron and hole pockets approximated by �n�n+1�−n. The
inset shows results of the linear approximation of first N terms �n
=1,2 , . . . ,N� of �n�n+1�. The relative deviations from the quasi-
classical frequency and phase are shown.
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FIG. 3. �Color online� The dependence of �−,n�kz� on the LL
index n for kz close to the H point of the BZ.
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En
G =

	

2
���	

2
�2

+ 2��e�vF
2Bn . �13�

On the other hand, the parameter � equals 1 for EF cross-
ing the E2 band of the SWM model. According to Eq. �8� this
leads to �−,n

G �kz�=1 /2, as for the SFs, in spite of the k depen-
dence not so close to parabolic one as the for the maximum
cross sections, �
1, where the energy spectra can be ap-
proximated by Eq. �11�.

The field dependence of the corresponding LLs ranges
from that described by Eq. �13� at the H point, which is close
to �B characteristic for DFs, to the linear dependence on B
typical for SFs for extremal electron and hole orbits, as given
by Eq. �11�. It follows from the above discussion that the
hyperbolic k dependence of the zero-field electron energy
bands, which changes considerably depending on the value
of kz, yields aperiodic MOs when a magnetic field is applied.
An exception is two kz in the neighborhood of the H point of
the BZ. We assume that this conclusion is at least qualita-
tively correct, as one can hardly believe that this is just the
neglected �3 which yields the MO aperiodicity.

There is another potential reason for deviations from the
MO periodicity. Unlike the optical experiments which in-
volve electrons with energies below and above the Fermi
energy, the SdH and dHvA oscillations reflect only the prop-

erties of electrons with an energy equal to EF. Note, that our
treatment is based on the assumption that EF is a constant.
This is not quite correct as the carrier concentration is a
constant and not EF, which should oscillate as a function of
B. This can be important for lowest LLs in high-mobility
samples and was considered as a single source of oscillation
aperiodicity in Ref. 12.

In conclusion, we have found that unlike MOs of SFs and
DFs, MOs in graphite are not periodic in 1 /B. These oscil-
lations are only asymptotically periodic in the quasiclassical
limit with the phase corresponding to massive SFs. The qua-
siclassical limit can be reached only exceptionally for
samples with very high mobility and at very low magnetic
field. Therefore, the determination of the oscillation phase in
samples with a limited number of resolved LLs below EF is
not a reliable tool for distinguishing between DFs and SFs in
graphite, due to the aperiodicity of MOs in a standard quan-
tum regime. Electrons in graphite are similar to SFs and DFs,
as follows from Eqs. �11� and �13� but are not equivalent.
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